
Customizable Architecture Search for Semantic Segmentation∗

Yiheng Zhang †, Zhaofan Qiu †, Jingen Liu§, Ting Yao ‡, Dong Liu †, and Tao Mei ‡

† University of Science and Technology of China, Hefei, China
‡ JD AI Research, Beijing, China § JD AI Research, Mountain View, USA

{yihengzhang.chn, zhaofanqiu, jingenliu, tingyao.ustc}@gmail.com

dongeliu@ustc.edu.cn, tmei@live.com

Abstract

In this paper, we propose a Customizable Architecture

Search (CAS) approach to automatically generate a net-

work architecture for semantic image segmentation. The

generated network consists of a sequence of stacked compu-

tation cells. A computation cell is represented as a directed

acyclic graph, in which each node is a hidden representa-

tion (i.e., feature map) and each edge is associated with an

operation (e.g., convolution and pooling), which transforms

data to a new layer. During the training, the CAS algorith-

m explores the search space for an optimized computation

cell to build a network. The cells of the same type share one

architecture but with different weights. In real applications,

however, an optimization may need to be conducted under

some constraints such as GPU time and model size. To this

end, a cost corresponding to the constraint will be assigned

to each operation. When an operation is selected during the

search, its associated cost will be added to the objective. As

a result, our CAS is able to search an optimized architec-

ture with customized constraints. The approach has been

thoroughly evaluated on Cityscapes and CamVid datasets,

and demonstrates superior performance over several state-

of-the-art techniques. More remarkably, our CAS achieves

72.3% mIoU on the Cityscapes dataset with speed of 108

FPS on an Nvidia TitanXp GPU.

1. Introduction

Semantic segmentation, which aims at assigning seman-

tic labels to every pixel of an image, is a fundamental top-

ic in computer vision. Leveraging the strong capability of

CNNs, which have been widely and successfully applied

to image classification [12, 13, 28, 29, 30], most state-of-

the-art works have made significant progress on semantic

segmentation [4, 6, 19, 21]. To tackle the challenges (e.g.,

reduced feature resolution and objects at multiple scales) in

∗This work was performed at JD AI Research.

Initial

conv

Customizable

Architecture Search

GPU Time

CPU Time

Num of MAC

Num of Params

Multi-Scale

Cell

Normal Cells

Reduction Cells

Constraints

Automatically

Design

Figure 1. Our proposed Customizable Architecture Search (CAS)

for semantic image segmentation. Given some constraints such

as GPU/CPU time and number of parameters, our CAS is able to

automatically generate an optimized network which consists of a

sequence of stacked computation cells.

CNN based semantic segmentation, researchers have pro-

posed various network architectures, such as the applica-

tion of dilated convolutions [4, 34] to capture larger contex-

tual information without losing the spatial resolution, and

multi-scale prediction ensemble [32]. Although these meth-

ods achieve promising high accuracy, they generally require

long inference time due to the complicated networks, which

carry huge numbers of operations and parameters.

With the increasing need of semantic segmentation on

some real-time applications like augmented reality wear-

ables and autonomous driving, there is a high demand for

fast semantic segmentation without sacrificing much ac-

curacy, even on a low-power mobile device. According-

ly, some researchers attempt to make a real-time inference

by various manually designed strategies including resizing

or cropping the input [36], pruning the network channel-

s [1], dropping some stages of the model [20], multiple s-

cales feature integration [36] and spatial-context decoupling

[33]. These designs usually require significant engineering

effort of human experts. In addition, they have less flexi-

bility to adjust the inference speed according to the actual

dataset and hardware configurations. In other words, it is

difficult to find a tradeoff between speed and performance

for a specific task. To deal with these issues, we propose

a Customizable Architecture Search approach to automati-

cally generate a lightweight network with customized con-

11641

straints on the availability of computational resource and

speed requirements. Our work is inspired by recently pro-

posed solutions to automate the manual process of network

design [17, 38]. The successes of these approaches have

been demonstrated on some image classification tasks by

surpassing the performances of human manually designed

architectures [17]. Rather than solely pursuing the best per-

formance like [3, 17, 38], we aim at searching an appro-

priate network under the constraints on the computational

resource of an application. We call this procedure as Cus-

tomizable Architecture Search (CAS). To the best of our

knowledge, our CAS is the first effort to automatically gen-

erate network architectures for semantic segmentation given

some constraints in real applications.

Figure 1 illustrates an overview of the proposed CAS

for semantic segmentation. The proposed lightweight net-

work consists of a couple of initial convolutions followed

by sequentially stacked computation cells including both re-

duction cell and normal cell in the backbone network. A

computation cell is a directed acyclic graph, which forms

the building block of the learned network. The CAS aims

at searching for an optimized architecture to achieve high-

quality feature maps. To further recover the loss of spatial

information during feature map learning, a multi-scale cell

is attached to the backbone network to fuse multiple scales

information. CAS jointly learns the architecture of the cells

as well as the associated weights. The same type of cell-

s share an identical architecture but with different weights.

By relaxing the search space to be continuous, we employ

the differential architecture search [17] to solve our CAS

objective. As a result, the network search can be optimized

with respect to a validation set by gradient descent.

The proposed CAS has been thoroughly evaluated on C-

ityscapes [8] dataset and promising results have been ob-

tained. To compare with state-of-the-art approaches, we

generate architectures constrained by GPU time and evalu-

ate them on Cityscapes [8] and CamVid [2] datasets. The re-

sults exceed the state-of-the-art approaches in term of both

performance and inference speed.

2. Related Work

CNN based Semantic Image Segmentation. Inspired

by the success of CNN on visual recognition [12, 13, 25, 26,

28, 29, 30], recently researchers have proposed various CN-

N based approaches for semantic segmentation. The typical

way of applying CNNs to segmentation is through patch-

by-patch scanning [9, 23]. The fully convolutional network

(FCN) [19] is proposed for semantic segmentation to exploit

the high learning capacity of CNNs. It enables spatial dense

prediction and efficient end-to-end training. Following FC-

N, researchers propose several advanced techniques ranging

from cross-layer feature ensemble [10, 15, 24, 32] to con-

text information exploitation [4, 5, 6, 18, 21, 27, 35, 37].

The FCN formulation could be further improved by em-

ploying post-processing techniques, such as the conditional

random field [4], to consider label spatial consistency.

A lot of recent efforts have been made to achieve high-

quality segmentation without considering the cost such as

inference time. For example, PSPNet [37] and DeepLabv3

[5] have achieved over 81% of mIoU on Cityscape dataset

running with less than 2 FPS, which is far away from real-

time. Some works attempt to improve the inference speed

by restricting the input resolution [1], pruning the channels

of the network [36], dropping stages of the model [20] and

utilizing the lightweight networks [31], while the loss of s-

patial information and network capacity corrupt the dense

prediction of semantic segmentation. To remedy the in-

formation loss, experienced experts have designed network

architectures to balance speed and segmentation quality.

ICNet [36] is proposed to achieve real-time segmentation

with a decent performance by employing a cascade net-

work structure and incorporating multi-resolution branches.

BiSeNet [33] decouples the network into a spatial path and

a context path, in order to obtain a faster network with a

competitive performance of semantic segmentation. Differ-

ing from the aforementioned efforts, in this paper we pro-

pose the solution of CAS, which automatically generates

a lightweight architecture with the best tradeoff between

speed and accuracy under some application constraints.

Network Architecture Search. The target of architec-

ture search is to automatically design network architectures

tailored for a specific task. The sequential model-based op-

timization [16] is proposed to guide the searching by learn-

ing a surrogate model. The reinforcement learning based

methods [22, 38], which train a controller network to gener-

ate neural architectures, are proposed to obtain state-of-the-

art performances on the tasks of image classification and

natural language processing. Instead of treating the archi-

tecture search as a black-box optimization problem over a

discrete domain, differentiable architecture search (DART-

S) [17], which searches architectures in a continuous space,

is presented to make the architecture be optimized by gra-

dient descent and achieve competitive performance using

fewer computational resources.

Our work is inspired by [17, 38]. Unlike these meth-

ods, however, our work attempts to achieve a good trade-

off between system performance and the availability of the

computational resource. In other words, our algorithm is

optimized with some constraints from real applications. We

notice that the recent DPC work [3] is very related to ours.

It addresses the dense image prediction problem via search-

ing an efficient multi-scale architecture on the use of perfor-

mance driven random search [11]. Nevertheless, our work

is different from [3]. First of all, we have different objec-

tives. Instead of targeting high-quality segmentation in [3],

our solution is customizable to search for an optimized ar-

11642

chitecture which is constrained by the requirements of re-

al applications. The generated architecture tries to keep a

balance between the quality and limited computational re-

source. Secondly, our solution optimizes the architecture of

the whole network including both backbone and multi-scale

module, while [3] focuses on multi-scale optimization. Fi-

nally, our method employs a lightweight network, which

costs much less training time as compared to that of [3].

3. Customizable Architecture Search

As shown in Figure 1, given the customized constraints

in semantic segmentation task, the proposed CAS search-

es for a computation cell (e.g., normal/reduction cell, and

multi-scale cell, which are represented as directed acyclic

graphs as depicted in Figure 2) as the building block for an

optimized network. Unlike the previous work [17], CAS

not only searches for effective operations for a cell, but al-

so considers the cost of choosing these operations. Namely,

each operation has an associated cost being selected. As a

result, the objective of architecture search is to generate a

network that minimizes the following function:

Lval + λLcost , (1)

where Lval is the loss on validation dataset, Lcost is the cost

associated with the network, and λ is the tradeoff controller.

To solve this objective, following [17], we optimize the ar-

chitecture of the computation cell by using gradient descen-

t. Figure 2 illustrates an illustration of generating an archi-

tecture with and without constraints. To make this section

self-contained, we first discuss the differentiable architec-

ture search of [17] in a general form in subsection 3.1. We

then describe how to perform the customizable optimization

for semantic segmentation in subsection 3.2 , and detail the

search space for network backbone and multi-scale cell in

subsection 3.3 and 3.4, respectively.

3.1. Differentiable Architecture Search

A computation cell is a directed acyclic graph (DAG) as

shown in Figure 2. The graph has an ordered sequence of

N nodes, represented as N = {x(i)|i = 1, . . . , N}, where

x(i) denotes the feature map in a convolutional network.

The transformation from x(i) to x(j) is represented as an

operation o(i,j)(·), which corresponds to a directed edge

in the graph. Each computation cell has two input nodes

(i.e., outputs of the previous two layers) and one output n-

ode (i.e., the concatenation of the intermediate nodes in the

cell). Specifically, an intermediate node is calculated as:

x
(j) =

∑

i<j

o
(i,j)(x(i)) , (2)

where x(i) is a node coming before x(j) in the cell. Hence,

the problem of architecture search is equivalent to learning

the operation on each edge in DAG.

1

2

0 3

1

2

0 3 1

2

0 3

With

Constraints

Without

Constraints

Figure 2. An illustration of generating a computing cel-

l with/without constraints. Each edge represents one operation be-

tween two nodes. The top graph shows many candidate operations

existing between nodes, and each candidate operation has its own

cost. The red edge denotes a heavy cost, and the green one has a

light cost. Without considering constraints, the search may gener-

ate a costly architecture (bottom left) for better performance, while

our CAS outputs an architecture with light cost (bottom right).

To make the search space continuous, a weighted com-

bination of all candidate operations is utilized as the trans-

formation on the directed edge as follows:

ō
(i,j)(x) =

∑

o∈O

Softmax(α(i,j)
o)o(x) , (3)

where o(·) is an operation in the operation candidate set

O of size No, and α
(i,j)
o is a learnable score of the op-

eration o(·). The vector α(i,j) ∈ R
No represents the s-

cores of all candidate operations on the edge from x(i) to

x(j). Then the cell architecture is denoted as α = {α(i,j)},

which is a set of vectors for all edges. Now the architec-

ture search could be formulated as finding α to minimize

the validation loss Lval(w
′(α), α), where w′(α) is the pa-

rameters of the operations. The parameters are obtained

by minimizing the training loss, formulated as w′(α) =
argminwLtrain(w,α). Accordingly, a cell could be op-

timized by adjusting α via gradient descent.

Since the variation of α leads to the recomputation of

w′(α) by minimizing Ltrain(w,α), the optimization proce-

dure could be approximately performed by alternately op-

timizing weight parameters w and cell architecture α with

gradient descent steps. In particular, for the parameter up-

date step k, wk−1 is moved to wk according to the gradient

▽wLtrain(wk−1, αk−1), and the architecture is updated to

minimize the validation loss:

Lval(wk − ξ▽wLtrain(wk, αk−1), αk−1) , (4)

where ▽wLtrain(wk, αk−1) is a virtual gradient step of wk

and ξ is the step’s learning rate. After optimizing the archi-

tecture of the computation cell encoded as α via gradient

descent, each operation combination ō(i,j), which locates

on the directed edge from x(i) to x(j) of the DAG, is re-

placed with the most likely operation candidate according

to α(i,j). Then k strongest predecessors of each interme-

diate node are retained, where the strength of an edge is

11643

3x3 conv

Stride 2

Image

1024 x 2048, 3

3x3 conv

Stride 1

3x3 conv

Stride 2

Normal

Cell

Reduction

Cell

Reduction

Cell

Normal

Cell

Normal

Cell x 4

Multi-Scale

Cell

512 x 1024, 8 512 x 1024, 8 256 x 512, 16 256 x 512, 48 128 x 256, 96 128 x 256, 96 64 x 128, 192 64 x 128, 192 128 x 256, 96

Prediction

1024 x 2048

Backbone Network

Figure 3. An overview of our network structure for semantic segmentation. We take 1024 × 2048 input as an example. It consists of two

main components: the backbone network on the left followed by the multi-scale cell on the right. The backbone designed for efficient

feature extraction begins with three convolutional layers followed by 6 normal cells and 2 reduction cells. The multi-scale cell learns to

refine the feature map by integrating accurate spatial information from the second normal cell into the final feature map. Each cell employs

the previous two cells’ outputs as its inputs.

defined as max(Softmax(α(i,j))). The k is set as 2 in the

following sections.

3.2. Customizable Optimization

As aforementioned, the differentiable architecture search

enables an efficient search of high-performance architec-

ture. Nevertheless, considering some practical constraints

in real applications, a high-performance architecture is not

the only pursuit given limited computational resource. In

this section, we propose a constrained architecture search

method, which takes a further step forward to discover an

appropriate design of the network satisfying customizable

constraints. To address the constraints in the architecture

search procedure, we associate a cost with each operation,

such that whenever an operation is selected, there is a cost

for the selection. Hence, the cost of a cell is formulated as:

Lcost =
∑

j

∑

i<j

∑

o∈O

coSoftmax(α(i,j)
o) , (5)

where co is the cost associated with operation o(·) (Please

refer to the implementation details in section 4.1 for how to

convert constraints to costs). Hence, the architecture is op-

timized by updating α according to the following gradient:

▽αLval + λ▽αLcost , (6)

where λ is the tradeoff parameter and maintains the balance

between the performance and network cost.

When applying CAS to semantic image segmentation,

we employ a network structure as shown in Figure 3. It

mainly contains two components: backbone and multi-scale

cell, which are built and optimized by CAS separately. Giv-

en the input images, the backbone is first utilized to learn

feature representations with rich semantics, while the accu-

racy of pixel-level localization will accordingly drop due to

consecutive down-sampling operations. On the other hand,

the multi-scale cell learns a refinement structure to recov-

er spatial information from the feature on different stages

of the backbone and leads to better predictions for seman-

tic segmentation. The following two sections describe the

details of the search for both components, respectively.

3.3. Backbone Architecture Search

As shown in Figure 3, the backbone network starts with

three convolutional layers, followed by eight cells, each of

which consists of N = 6 nodes including the input and out-

put node. The first two nodes of the i-th cell are the outputs

of the (i − 1)-th and (i − 2)-th cells or layers with 1 × 1
convolutions if dimension projection needed. In general, a

backbone for image classification contains 5 spatial reduc-

tion which results in a feature map of 1/32 size of the orig-

inal image [12, 29, 30]. Different from image classification

which focuses on semantic aggregation, the loss of spatial

information caused by spatial reduction is more important

for semantic segmentation. As such, following [5], the spa-

tial resolution of the final feature map is set only 16 times s-

maller than the input image resolution to balance the spatial

density, semantics and expensive computation. In our case,

in addition to the first and third convolutional layers of the

backbone network with strides of 2, the two reduction cells

also serve for down-sampling the feature map. Except for

the reduction cells, the other cells are normal cells without

reduction. Hence, the searchable architectures of the back-

bone are represented as αnormal and αreduce shared by all

normal cells and reduction cells, respectively, but with dif-

ferent weights.

We draw inspiration from the recent advances in the C-

NN literatures and collect the operation set Ob:

• identity

• 3x3 max pooling • 3x3 separable conv, repeat 2

• 3x3 ave pooling • 3x3 separable conv, repeat 4

• 3x3 conv • 3x3 conv, repeat 2

• 3x3 dilated conv • 3x3 dilated conv, repeat 2

• 2x2 ave pooling stride 2 + 3x3 conv + upsampling

• 2x2 ave pooling stride 2 + 3x3 conv repeat 2 + upsampling

The Ob consists of four types of operations, i.e., non-

learned operations, standard convolutions, separable con-

volutions and pooled convolutions. The identity shortcut

[12], max pooling and average pooling are non-learned op-

erations. The standard 3 × 3 convolutional layers with op-

tional dilation are widely utilized in the convolutional net-

works designed for semantic segmentation. The separable

convolution proposed in [7] is an operation that efficiently

balances cost and performance by factorizing the standard

11644

convolution into a depthwise convolution and a pointwise

convolution. It is worth noting that the separable convolu-

tion is often applied at least twice in an operation [17, 38].

In addition to existing operations, we propose the spatial

bottleneck operation, namely pooled convolution. This op-

eration applies average pooling with stride 2 on the feature

map, followed by 3×3 convolutions and finally recovers the

resolution of the feature map via bilinear upsampling. Our

experiments demonstrate that such operation could effec-

tively enlarge the receptive field and reduce computation-

al cost. Note that we also repeat each weighted operation

twice to enlarge the potential capacity of backbone network.

3.4. Multi­Scale Cell Search

With an optimized backbone network, the high-quality

feature maps learned from images could be obtained and

fed into the classifier to generate dense predictions for the

images. To further refine feature maps by recovering the

spatial information, multi-scale fusion, which aggregates d-

ifferent level features, has been proved to be effective for

semantic segmentation [6, 10, 15, 19, 21, 33, 36]. In this

paper, we aim at searching a multi-scale cell rather than di-

rectly utilizing manually designed architectures. The cell

αms consisting of N = 9 nodes is heavier than αnormal and

αreduce in terms of cost. Nevertheless, the cell αms is only

applied once at the end of the network and thus the cost is

negligible compared to other cells. In αms, the spatial res-

olutions of the inputs are firstly aligned by upsampling the

smaller one via bilinear interpolation and then independent

1 × 1 convolutions are applied on each directed edge from

spatially aligned inputs to intermediate nodes for channel

projection. Inspired by the recent works on semantic seg-

mentation, an operation set Oms is collected specifically as:

• 3x3 conv, dilation=1 • 3x3 conv, dilation=2

• 3x3 conv, dilation=4 • 3x3 conv, dilation=8

• 15x1 then 1x15 conv • 25x1 then 1x25 conv

• 8x8 residual SPP • 16x16 residual SPP

• 24x24 residual SPP • identity

Three types of operations, i.e., standard convolutions, s-

patial decomposed convolutions and residual spatial pyra-

mid pooling, are included in Oms. Convolutional layers

with multiple dilations could effectively capture multi-scale

information [6]. The spatial decomposed convolution with

large kernel size enables densely connections within a large

region in the feature map and embeds rich context infor-

mation in each location with less computational cost than

general convolution with large kernel [21]. To provide con-

textual scenery prior to the feature map, the residual spatial

pyramid pooling (SPP) with different window sizes is ex-

plored. Inside of each window, an average pooling is per-

formed followed by an 1×1 convolution to encode the con-

textual information. The spatial resolution of the encoded

context, which is combined with input feature map as resid-

ual value, is recovered by bilinear upsampling.

4. Implementation

4.1. Customizable Architecture Search

We utilize the gradient in Eq.(6) to update the α in CAS,

The ▽αLval could be derived from Eq.(4) as:

▽αLval(w
′
, α)− ξ▽

2
α,wLtrain(w,α)▽w′Lval(w

′
, α) , (7)

where w′ = w− ξ▽wLtrain(w,α). The weight parameters

w are updated by the virtual gradient step. For ease of opti-

mization, an approximation of Eq.(7) is applied and the gra-

dient of architecture could be represented as ▽αLval(w,α)
with respect to the case of ξ = 0 on the assumption that α

and w are independent.

Given the candidate operation set O, to evaluate the cost

co, we firstly measure the cost c′o of the whole network

whose cells only consist of o(·), and co is computed as

co = c′o − c′id, where cid denotes the cost of the network

whose operations of cells are replaced by “identity”. The

cost could be defined according to the constraints, e.g., G-

PU / CPU inference time, number of parameters and num-

ber of multiply-accumulate operations (MAC). In order to

characterize the lack of concatenation between two nodes

in the computation cell, a special “None” operation is ap-

pended to O during the optimization but this operation is

excluded in the decision of the final architecture.

4.2. Semantic Segmentation

In our implementations, we search the architectures of

the backbone network and multi-scale cell separately. The

backbone network architecture is firstly determined accord-

ing to αnormal and αreduce which are both optimized by

CAS on the task of semantic segmentation. Then we utilize

ImageNet ILSVRC12 dataset [28] to pre-train the backbone

network from the scratch. With the ImageNet pre-trained

weights, the multi-scale cell is appended at the top of the

backbone. The architecture is fixed by αms after the proce-

dure of CAS. The whole network initialized with the Ima-

geNet pre-trained weights in backbone, is finally optimized

on semantic segmentation.

4.3. Training Strategy

Our proposal is implemented on Caffe [14] framework

with CUDNN, and mini-batch stochastic gradient descent

algorithm is exploited to optimize the model. In the search

procedure of CAS, the initial learning rate is 0.005. We

exploit the “poly” learning rate policy with power fixed to

0.9. Momentum and weight decay are set to 0.9 and 0.0005,

respectively. The batch size is 16. The maximum iteration

number is 15k. To evaluate the architecture generated by

CAS, we train the whole network for 90k iterations. The

rest hyper-parameters are the same as those in the search

procedure of CAS.

11645

Ci-1Ci-2 cat
identity

pooled

conv

+

identity

pooled

conv

+

identity

identity

+

max

pool

pooled

conv

+

Ci-1

identity

conv

+

identity

conv

+

Ci-2 cat

Reduction Cell

Normal Cell

(a) 1k iters, mIoU=62.4%, time=14.1ms

sep

conv x2

pooled

conv

+

Ci-1

dilated

conv x2

identity

+

identity

pooled

conv x2

+Ci-2 cat

sep

conv x2

pooled

conv

+

Ci-1

conv

max

pool

+

pooled

conv x2

identity

+Ci-2 cat

Reduction Cell

Normal Cell

(b) 5k iters, mIoU=64.6%, time=22.4ms

sep

conv x2

pooled

conv

+

Ci-1

dilated

conv x2

identity

+

pooled

conv x2

identity

+

Ci-2 cat

Ci-1Ci-2 cat

pooled

conv

conv x2

+

pooled

conv x2

dilated

conv

+

pooled

conv x2

conv

+

Reduction Cell

Normal Cell

(c) 15k iters, mIoU=68.1%, time=23.8ms

Figure 4. Examples of the normal cell and reduction cell during CAS procedure with the GPU Time constraint. The performance of the

network is consistently increased from 62.4% to 68.1% with the increase of iterations, and the inference time converges to 23.8ms.

5. Experiments

In all experiments, the Intersection over Union (IoU) per

category and mean IoU over all the categories are used as

the performance metric. The resolution of the input image

is 1024×2048, and the GPU/CPU inference time is reported

on one Nvidia GTX 1070 GPU card and Intel i7 8700 CPU,

respectively, unless otherwise stated.

5.1. Datasets

We conduct a thorough evaluation of CAS on Cityscapes

[8], one popular benchmark for semantic understanding of

urban street scenes. It contains high-quality pixel-level an-

notations of 5,000 images collected in street scenes from 50

different cities. The image resolution is 1024 × 2048. Fol-

lowing the standard protocol in segmentation task [8], 19

semantic labels are used for evaluation. The training, val-

idation, and test sets contain 2975, 500, and 1525 images,

respectively. An additional set of 23,473 coarsely annotated

images are also available in this dataset. In our evaluation,

the training set is further split into two groups, which play

the roles of “training set” (1599 images from 9 cities) and

“validation set” (1376 images from another 9 cities) in ar-

chitecture search, respectively. Note that the original vali-

dation set or test set is never used for architecture search.

Moreover, we also evaluate the merit of CAS on the

CamVid dataset, which is a standard scene parsing dataset.

There are five video sequences in total with resolution up

to 720 × 960. The sequences are densely labeled at one

frame per second with 11 class labels. We follow the train-

ing/testing split in [2], with 468/233 labeled frames in the

dataset for training/testing.

5.2. Evaluation of CAS

Architecture search by CAS. First, we conduct exper-

iments to explore the evolution procedure of the architec-

ture optimization given some constraints. The architecture

search is performed on Cityscapes training set from the

scratch and the searched architectures are evaluated on C-

ityscapes validation set. Figure 4 illustrates the architecture

evolution of a normal cell and a reduction cell during the

CAS optimization given the constraint on GPU time. Let

us look at how a normal cell architecture changes during

CAS optimization, which attempts to reach a tradeoff be-

tween network performance and GPU time. As shown in

Figure 4(a), at the beginning of optimization, the cell se-

lects the most lightweight operation “identity” and “pooled

conv”, which is able to immediately decrease the network

computation by reducing the spatial resolution. As a re-

sult, the inference of the network is fast with relatively low

mIoU, i.e., 62.4%@14.1ms. When iterating the search pro-

cess 5k times, heavy operations (e.g., separable convolution

and dilated convolution) are selected in pursuit of better per-

formance by sacrificing some inference time (from 14.1ms

(a) to 22.4ms (b)) as shown in Figure 4(b). The search con-

verges after 15k iterations to reach a cell in Figure 4(c) and

no extra heavy operations are employed after 5k iterations

in our observations. The results indicate that CAS could

optimize cells well with the constraints during architecture

search. The whole search procedure of cells verifies our de-

sign that the performance and customized constraints of the

network could be automatically balanced by CAS.

CAS with different constraints. Then, we conduct an-

other group of experiments to demonstrate the effectiveness

of CAS. More specifically, we examine the impact of the

tradeoff parameter λ towards a balance between segmenta-

tion performance and constraint costs. All the experiments

are evaluated on Cityscapes validation set with networks

trained on the training set from the scratch. The experi-

ment on each setting is repeated five times, and the average

values are reported. Figure 5(a)∼5(d) depicts results un-

der constraints of GPU time, CPU time, MAC, and Number

of Parameters, respectively. The blue and red points/curves

in the figure illustrate the mIoU and cost of networks giv-

en different λ values, and the curves are fit to the points

utilizing 2-terms power function. All the experiments con-

11646

0 0.005 0.01 0.015 0.02 0.025 0.03
10

15

20

25

30

35

40

45

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

mIoU-λ

mIoU-λ fitting curve

GPUTime-λ
GPUTime-λ fitting curve

m
Io

U

G
P

U
 T

im
e

 /
 m

s

λ
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0

5

10

15

20

25

30

35

40
10

2

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

mIoU-λ
mIoU-λ fitting curve

CPUTime-λ
CPUTime-λ fitting curve

m
Io

U

C
P

U
 T

im
e

 /
 m

s

λ
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0

0.5

1

1.5

2

2.5

3
10

10

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

mIoU-λ
mIoU-λ fitting curve

MAC-λ
MAC-λ fitting curve

m
Io

U

M
A

C

λ
(a) (b) (c)

(d) (e) (f)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
2

4

6

8

10

12

14

16
10

5

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

mIoU-λ
mIoU-λ fitted curve

of Params-λ
of Params-λ fitted curve

N
u

m
 o

f
P

a
ra

m
s

λ

m
Io

U

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Num of Params 10
6

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

GPU Time

GPU Time Fitting Curve

CPU Time

CPU Time Fitting Curve

of Params

of Params Fitting Curve

MAC

MAC Fitting Curve

m
Io

U

10 15 20 25 30 35 40 45 50 55 60

GPU Time / ms

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

GPU Time

GPU Time Fitting Curve

CPU Time

CPU Time Fitting Curve

of Params

of Params Fitting Curve

MAC

MAC Fitting Curve

m
Io

U

Figure 5. (a) GPU Time-λ and mIoU-λ curves under the constraint of GPU time. (b) CPU Time-λ and mIoU-λ curves under the constraint

of CPU time. (c) MAC-λ and mIoU-λ curves under the constraint of MAC. (d) Num of Params-λ and mIoU-λ curves under the constraint

of number of parameters. (e) mIoU-GPUTime curves under four constraints. (f) mIoU-Num of Params curves under four constraints.

Better viewed in original color pdf.

catCi-1Ci-2

conv

dilate8

res

SPP16

+

res

SPP16

res

SPP24

+

res

SPP24

res

SPP24

+

identity

identity

+

Conv

15x1:1x15

res

SPP16

+

Conv

15x1:1x15

Conv

25x1:1x25

+

Figure 6. The architecture of the multi-scale cell.

sistently show that the network cost decreases rapidly with

the increase of λ, resulting in the drop of the performance.

Please also note that a small increment of λ could lead to

a significantly reduced cost but without notably sacrificing

the performance, especially when λ is relatively small. In

other words, we could expect an affordable network whose

performance is not much worse than that of the costly ones.

Next, we turn to compare the network design of CAS

with respect to different constraints. Figure 5(e) and 5(f)

shows the mIoU performances when utilizing GPU time

and number of parameters as the measure of cost under each

constraint, respectively. In the two figures, each curve de-

picts the performances of networks which are generated by

CAS with the corresponding constraint. For instance, the

blue and green curve in Figure 5(e) represents the perfor-

mances of the networks optimized with constraints of GPU

Table 1. Evaluation of pre-training and multi-scale cell.

Method mIoU (%) Time (ms)

CAS-GT 68.1 23.8

+ImageNet Pre-train 70.4 23.8

+MSC

PSP[37] 71.5 26.5

ASPP[5] 72.9 33.2

ASPP+[6] 73.9 56.9

MSCell 74.0 29.2

time and CPU time, respectively. As expected, optimizing

networks when setting the alignment of constraint and the

computation on cost will lead to better performance. Specif-

ically, capitalizing on the constraint of GPU time constantly

exhibits an mIoU boost over other constraints when com-

puting cost on GPU time. Similarly, when the cost is calcu-

lated on number of parameters, the networks with the con-

straint of number of parameters achieve the best mIoU. The

results indicate the flexibility of our CAS for architecture

search with customizable constraints.

Evaluation of the multi-scale cell. The multi-scale cell

is employed to recover the spatial information loss caused

by the downsampling operations in the backbone network.

Here, we study how the multi-scale cell influences the over-

all performance. Let CAS-GT be the best backbone net-

work searched by CAS under the constraint of GPU time

and λ = 0.01. The multi-scale cell is placed at the top of

CAS-GT. The architecture of the multi-scale cell searched

by CAS, which is denoted as MSCell, is illustrated in Fig-

ure 6. As the most frequently selected operation, the residu-

11647

Table 2. mIoU and inference FPS on Ciytscapes validation (val)

and test (test) sets. The mIoU and inference FPS of our method

are given on the downsampled images with resolution 768×1536.

Method
mIoU (%)

FPS
val test

FCN-8s [19] - 65.3 4.4

Dilation10 [34] 68.7 67.1 0.7

PSPNet [37] - 81.2 1.3

DeepLabv3 [5] - 81.3 1.3

SegNet [1] - 57.0 33.0

ENet [20] - 58.3 78.4

SQ [31] - 59.8 21.7

ICNet [36] 67.7 69.5 37.7

ICNet [36] (+coarse) - 70.6 37.7

BiSeNet-Xception39 [33] 69.0 68.4 105.8

BiSeNet-Res18 [33] 74.8 74.7 65.5

CAS-GT+MSCell 71.6 70.5 108.0

CAS-GT+MSCell (+coarse) 72.5 72.3 108.0

al pyramid pooling benefits from its capability of gathering

the context information from large regions and preserving

fine spatial information. Table 1 details the mIoU and GPU

time of CAS-GT with and without the multi-scale cell. In

our case, ImageNet pre-training successfully boosts up the

mIoU performance from 68.1% to 70.4% without additional

inference time. Utilizing multi-scale cells (MSC) at the top

of ImageNet pre-trained CAS-GT could further increase the

mIoU of the network. Particularly, PSP[37], ASPP[5] and

ASPP+[6], which are manually designed multi-scale cells,

obtain 1.1%, 2.5% and 3.5% performance gains with ex-

tra 2.7ms, 9.4ms and 33.1ms inference time, respectively.

Compared to the manually designed ones, our MSCell lead-

s to an mIoU increase of 3.6% and the mIoU performance

reaches 74.0% with only 5.4ms additional inference time.

5.3. Real­time Semantic Segmentation

In this section, we validate CAS with the configuration

of CAS-GT plus MSCell on the scenario of real-time se-

mantic segmentation. The architecture search is optimized

with the constraint of GPU time. We run all the inferences

on an Nvidia TitanXp GPU card and calculate the frame per

second (FPS) for all the methods. For fair comparisons, we

measure the speed of the methods based on our implemen-

tations if the original speed was reported on different GPUs.

Results on Cityscapes. We evaluate CAS-GT+MSCell

on Cityscapes validation and test sets. The validation set is

included for training when submitting our network to on-

line Cityscapes server and evaluating the performance on

official test set. Following [33], we scale the resolution of

the image from 1024 × 2048 to 768 × 1536, and measure

the speed and mIoU without other evaluation tricks. Both

the performance and FPS comparisons are summarized in

Table 2. Overall, our CAS-GT+MSCell is the fastest a-

mong all the methods. Compared to BiSeNet-Xception39

Table 3. mIoU and inference FPS on CamVid test set. The mIoU

and inference FPS of our method are given on the original images

with resolution 720× 960.
Method mIoU (%) FPS

Dilation8 [34] 65.3 6.5

PSPNet50 [37] 69.1 6.8

SegNet [1] 55.6 29.4

ENet [20] 51.3 61.2

ICNet [36] 67.1 34.5

BiSeNet-Xception39[33] 65.6 -

BiSeNet-Res18[33] 68.7 -

CAS-GT+MSCell 71.2 169.0

[33] which is as fast as ours, CAS-GT+MSCell leads to an

mIoU performance boost of 2.1% on the test set. Compared

to the methods designed for high-speed semantic segmen-

tation such as ENet [20], SQ [31] and ICNet [36], CAS-

GT+MSCell achieves faster inference and makes perfor-

mance improvement over them by 12.2%, 10.7% and 1.0%,

respectively. The results demonstrate the effectiveness of

our CAS for balancing performance and constraints. When

additionally leveraging coarse annotations of Cityscapes,

CAS-GT+MSCell yields the mIoU of 72.3% on test set.

Results on CamVid. To validate the transferability

of learnt architectures, we perform the experiments on

CamVid with the cells searched on Cityscapes for real-

time semantic segmentation. Note that we merely transfer

the architectures of CAS-GT+MSCell but train the weight-

s on CamVid. Table 3 details the comparisons of both

performance and inference time on CamVid test set. The

input resolution is 720 × 960. In particular, our CAS-

GT+MSCell surpasses the best competitor BiSeNet-Res18

by 2.5% in mIoU. More importantly, the inference speed of

CAS-GT+MSCell achieves 169 FPS, which is very impres-

sive. The results basically verify the merit of CAS from the

aspect of network generalization.

6. Conclusion

In this paper, we propose an approach to automatical-

ly generate a network architecture for semantic image seg-

mentation. Unlike some previous approaches, which re-

quire huge efforts from human experts to manually design

a network, our approach utilizes a lightweight framework,

and automatically searches for optimized computation cells

which are the building blocks of the network. In addition,

our CAS takes the constraints of real applications into ac-

count when optimizing the architecture. As a result, ours is

able to seek a good balance between segmentation perfor-

mance and available computational resource. Experiments

on both Cityscapes and CamVid datasets demonstrate the

advantages over other state-of-the-art approaches.

Acknowledgments. This work was supported in part by

the Strategic Priority Research Program of the Chinese A-

cademy of Sciences under Grant XDB06040900.

11648

References

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipol-

la. Segnet: A deep convolutional encoder-decoder archi-

tecture for image segmentation. IEEE Trans. on PAMI,

39(12):2481–2495, 2017.

[2] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and

Roberto Cipolla. Segmentation and recognition using struc-

ture from motion point clouds. In ECCV, 2008.

[3] Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, George

Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam,

and Jonathon Shlens. Searching for efficient multi-scale ar-

chitectures for dense image prediction. In NIPS, 2018.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-

age segmentation with deep convolutional nets, atrous con-

volution, and fully connected crfs. IEEE Trans. on PAMI,

40(4):834–848, 2018.

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017.

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

ECCV, 2018.

[7] Francois Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, 2017.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Tim-

o Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016.

[9] Clement Farabet, Camille Couprie, Laurent Najman, and

Yann LeCun. Learning hierarchical features for scene la-

beling. IEEE Trans. on PAMI, 35(8):1915–1929, 2013.

[10] Golnaz Ghiasi and Charless C. Fowlkes. Laplacian pyramid

reconstruction and refinement for semantic segmentation. In

ECCV, 2016.

[11] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg

Kochanski, John Karro, and D Sculley. Google vizier: A

service for black-box optimization. In SIGKDD, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[13] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, 2018.

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross Girshick, Sergio Guadarra-

ma, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In ACM MM, 2014.

[15] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Rei-

d. Refinenet: Multi-path refinement networks for high-

resolution semantic segmentation. In CVPR, 2017.

[16] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlen-

s, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In ECCV, 2018.

[17] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In ICLR, 2019.

[18] Wei Liu, Andrew Rabinovich, and Alexander C. Berg.

Parsenet: Looking wider to see better. In ICLR Workshop,

2016.

[19] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Ful-

ly convolutional networks for semantic segmentation. In

CVPR, 2015.

[20] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Euge-

nio Culurciello. Enet: A deep neural network architecture

for real-time semantic segmentation. arXiv preprint arX-

iv:1606.02147, 2016.

[21] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and

Jian Sun. Large kernel matters – improve semantic segmen-

tation by global convolutional network. In CVPR, 2017.

[22] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jef-

f Dean. Efficient neural architecture search via parameters

sharing. In ICML, 2018.

[23] Pedro HO Pinheiro and Ronan Collobert. Recurrent convo-

lutional neural networks for scene labeling. In ICML, 2014.

[24] Tobias Pohlen, Alexander Hermans, Markus Mathias, and

Bastian Leibe. Full-resolution residual networks for seman-

tic segmentation in street scenes. In CVPR, 2017.

[25] Zhaofan Qiu, Ting Yao, and Tao Mei. Deep quantiza-

tion: Encoding convolutional activations with deep gener-

ative model. In CVPR, 2017.

[26] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In ICCV, 2017.

[27] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning deep

spatio-temporal dependence for semantic video segmenta-

tion. IEEE Trans. on MM, 20(4):939–949, 2018.

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

IJCV, 115(3):211–252, 2015.

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015.

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincen-

t Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015.

[31] Michael Treml, José Arjona-Medina, Thomas Unterthiner,

Rupesh Durgesh, Felix Friedmann, Peter Schuberth, An-

dreas Mayr, Martin Heusel, Markus Hofmarcher, Michael

Widrich, et al. Speeding up semantic segmentation for au-

tonomous driving. In NIPS Workshop, 2016.

[32] Fangting Xia, Peng Wang, Liang-Chieh Chen, and Alan L.

Yuille. Zoom better to see clearer: Human and object parsing

with hierarchical auto-zoom net. In ECCV, 2016.

[33] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmenta-

tion network for real-time semantic segmentation. In ECCV,

2018.

11649

[34] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-

tion by dilated convolutions. In ICLR, 2016.

[35] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao

Mei. Fully convolutional adaptation networks for semantic

segmentation. In CVPR, 2018.

[36] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping

Shi, and Jiaya Jia. Icnet for real-time semantic segmentation

on high-resolution images. In ECCV, 2018.

[37] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

CVPR, 2017.

[38] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018.

11650

