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ABSTRACT

One of the fundamental problems in image search is to rank
image documents according to a given textual query. We
address two limitations of the existing image search engines
in this paper. First, there is no straightforward way of com-
paring textual keywords with visual image content. Image
search engines therefore highly depend on the surrounding
texts, which are often noisy or too few to accurately describe
the image content. Second, ranking functions are trained
on query-image pairs labeled by human labelers, making
the annotation intellectually expensive and thus cannot be
scaled up.
We demonstrate that the above two fundamental chal-

lenges can be mitigated by jointly exploring the subspace
learning and the use of click-through data. The former
aims to create a latent subspace with the ability in com-
paring information from the original incomparable views
(i.e., textual and visual views), while the latter explores
the largely available and freely accessible click-through data
(i.e., “crowdsourced” human intelligence) for understanding
query. Specifically, we investigate a series of click-through-
based subspace learning techniques (CSL) for image search.
We conduct experiments on MSR-Bing Grand Challenge
and the final evaluation performance achieves DCG@25 =
0.47225. Moreover, the feature dimension is significantly re-
duced by several orders of magnitude (e.g., from thousands
to tens).
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1. INTRODUCTION
Keyword-based image search has received intensive re-

search attention since the early of 1990s [8]. The significance
of the topic can be partly reflected from the huge volume of
published papers, particularly for addressing the problems
of learning the rank or similarity functions. Despite these ef-
forts, the fact that the queries (texts) and search targets (im-
ages) are of two different modalities (or views) has resulted
in the open problem of “semantic gap.” Specifically, a query
in the form of textual keywords is not directly comparable
with the visual content of images. The commercial search
engines to date primarily reply on textual features extracted
from the surrounding texts of images. This kind of visual
search approach may not always achieve satisfying results
as textual information is sometimes noisy and even unavail-
able. Moreover, image rankers trained on query-image pairs
labeled by human experts may lead to poor generalization
performance due to the label noise problem and difficulty
associated with understanding the user’s intent.

Inspired by the success of subspace learning [9], this pa-
per studies the cross-view (i.e., text to image views) search
problem by learning a common latent subspace that allows
direct comparison of text queries and images. Specifically,
by mapping to the latent subspace, the similarity between a
textual query and a visual image can be directly measured
between their projections, making the information from orig-
inal incomparable cross-view space comparable in the shared
latent subspace.

Moreover, we consider exploring user click-through data,
aiming to understand the user’s intent for image search. In
general, image rankers obtain training data by having hu-
man experts label the relevance of query-image pairs. How-
ever, it is difficult to fathom the user’s intent based on
the query keywords alone, especially for those ambiguous
queries. For example, given the query “gorilla hummer,” ex-
perts tend to label images of animals“gorilla”and“hummer”
as highly relevant. However, empirical evidence suggests
that most users wish to retrieve images of a car of “gorilla
hummer” type. The experts’ labels might therefore be er-
roneous resulting in training sets with label noise and the
ranker is learnt to be sub-optimal. In this work, our click-
through-based learning provides an alternative to address
this problem. Most image search engines display results as
thumbnails. The user can browse the entire image search
results before clicking on a specific image. As such, users
predominantly tend to click on images that are relevant to
their query. Therefore, the click data can serve as a reliable
and implicit feedback for image search.
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Figure 1: Click-through-based image search framework

(better viewed in color). (a) Latent subspace learning

between textual query and visual image based on click-

through bipartite graph. (b) With the learnt mapping

matrices Wq and Wv, queries and images are projected

into this latent subspace and then the distance in the

latent subspace is directly taken as the measurement of

query-image relevance. Then for each query, the images

are ordered based on the relevance scores to the query.

By jointly integrating subspace learning and click-through
data, this paper investigates click-through-based subspace
learning approaches (CSL) for image search, as shown in
Figure 1. Specifically, a bipartite graph between the user
queries and images is constructed on the search logs from a
commercial image search engine. An edge between a query
and an image is established, if the users who issue the query
clicked the image. Subspace learning aims to learn a latent
subspace in the way of minimizing the distance between the
mappings of query and image, or maximizing the correlation
between the two views. After the optimization of subspace
learning, the relevance score between a query and an im-
age in the original space can be directly computed based on
their mappings. For any query, the image search list will be
returned by sorting their relevance scores to the query.
In summary, this paper makes the following contributions:

∙ We study the problem of keyword-based image search
by jointly exploring subspace learning and the use of
click-through data.

∙ We investigate click-through-based subspace learning
methods, which aim to learn a latent subspace. By
mapping to the subspace, textual queries and visual
images can be directly compared.

The remaining sections are organized as follows. Section
2 presents click-through-based subspace learning methods.
Section 3 provides empirical evaluations, followed by the dis-
cussions and conclusions in Section 4.

2. CLICK-THROUGH-BASED SUBSPACE

LEARNING
The main goal of click-through-based subspace learning

(CSL) method is to create a latent common subspace with
the ability of directly comparing semantic textual query and
image visual content. Four subspace learning techniques are
investigated, i.e., Canonical Correlation Analysis (CCA) [2],
Click-through-based Cross-view Learning (CCL) [6], Poly-
nomial Semantic Indexing (PSI) [10], and Passive-Aggressive

Model (PA) [3]. After we obtain the latent subspace, the
relevance between query and image is directly measured by
their mappings. The approach overview is shown in Fig-
ure 1.

In the following, we will first define the bipartite graph
that naturally encodes user actions in the query log, followed
by briefly presenting the four subspace learning approaches.
Finally, the CSL algorithm for image search is presented.

2.1 Notation
Let G = (V, ℰ) denote a click-through bipartite. V = Q ∪

V is the set of vertices, which consists of a query set Q and
an image set V . ℰ is the set of edges between query vertices
and image vertices. The number associated with the edge
represents the clicked times in the image search results of the
query. Suppose there are n triads {qi, vi, ci}

n
i=1 generated

from the click-through bipartite in total, where ci is the
click counts of image vi in response to query qi. Let Q =
{q1,q2, . . . ,qn}

⊤ ∈ ℝ
n×dq and V = {v1,v2, . . . ,vn}

⊤ ∈
ℝ

n×dv denote the query and image feature matrix, where
qi and vi are the textual and visual feature of query qi
and image vi, and dq and dv are the feature dimensionality,
respectively. The click matrix C is a diagonal n× n matrix
with its diagonal elements as ci.

2.2 Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a classical tech-

nique, which explores the mapping matrices by maximizing
the correlation between the projections in the subspace. We
assume that a low-dimensional common subspace exists for
the representation of the query and image. The linear map-
ping function can be derived from the common subspace by

f(qi) = qiWq, and f(vi) = viWv, (1)

where d is the dimensionality of the common subspace, and
Wq ∈ ℝ

dq×d andWv ∈ ℝ
dv×d are the transformation matri-

ces that project the query textual semantics and image con-
tent into the common subspace, respectively. CCA aims to
find the two linear projections making (QWq,VWv) max-
imally correlated as

(Wq,Wv) = argmax
Wq ,Wv

corr(QWq,VWv). (2)

Specifically, we view the click number of a query and an
image as an indicator of their relevance. All the query-image
pairs generated from click-through bipartite graph are used
for learning the linear mapping projections.

2.3 Click-through-based Cross-view Learning
The training of Click-through-based Cross-view Learning

(CCL) is performed simultaneously by minimizing the dis-
tance between query and image mappings in the latent sub-
space weighted by their clicks, and preserving the structure
relationships between the training examples in the original
feature space. In particular, the objective function of CCL
is composed of two components, i.e., distance between views
in the latent subspace, and the structure preservation in the
original space. The overall objective function of CCL is as

min
Wq,Wv

tr
(

(QWq −VWv)⊤C(QWq −VWv)
)

+�(
n
∑

i,j=1
Sq
ij∥qiWq − qjWq∥

2+
n
∑

i,j=1
Sv
ij∥viWv − vjWv∥

2)
,

(3)



Table 1: The DCG@25 (%) of different approaches on

Dev dataset.
Appr. NGS GLP CCA CCL PSI PA FUS

48.99 50.25 50.55 50.59 49.91 50.17 51.12

where � is the tradeoff parameter, Sq ∈ ℝ
n×n and Sv ∈

ℝ
n×n denote the affinity matrices defined on the queries

and images, respectively. The first term is the cross-view
distance, while the second term represents structure preser-
vation.
The underlying assumption of CCL is that the higher the

click number, the smaller the distance between the query
and the image in the latent subspace. Furthermore, the
similarity between examples in the original space can be
preserved in the learned latent subspace.

2.4 Polynomial Semantic Indexing
Given a query qi and an image vj , a polynomial ranking

model with 2-degree is given by

f(qi, vj) = (qiWq)(vjWv)
T
. (4)

The training of Wq and Wv could be many forms. From
our click-through data, we can easily get a set of triplets T ,
where each tuple (q, v+, v−) consists of the query q, an image
v+ with higher click and a lower clicked image v−. Deriving
from the idea of “learning to rank” [5], it aims to optimize
Wq and Wv which makes f(q, v+) > f(q, v−), i.e., image
v+ should be ranked higher than image v−. The margin
ranking loss is employed and the optimization problem is
defined as

minimize :
∑

(q,v+,v−)∈T

max(0, 1− f(q, v+) + f(q, v−)). (5)

2.5 Passive-Aggressive Model
Similar in spirit, Passive-Aggressive model measures the

match between a query qi and an image vj by first projecting
the query into the image space. Accordingly, the ranking
function is defined as

f(qi, vj) = qiWqv
T
j . (6)

For a tuple (q, v+, v−), the change of Wq is determined
by whether the constrains of f(q, v+) > f(q, v−) is veri-
fied. The optimization of Wq is performed by adapting the
Passive-Aggressive algorithm [3]. It is worth noticing that
here the subspace is set to image space and hence Wv is the
identity matrix.

2.6 CSL Algorithm
After the optimization of Wq and Wv, we can obtain the

linear mapping functions defined in Eq.(1). With this, orig-
inal incomparable textual query and visual image become
comparable. Specifically, given a test query-image pair, we
can compute the similarity or distance value between the
pair as reflecting how relevant the query could be used to
describe the given image. For any query, sorting by its cor-
responding values for all its associated images gives the re-
trieval ranking for these images.

3. EXPERIMENTS
We conducted experiments on the MSR-Bing Image Re-

trieval Challenge dataset, i.e. Clickture [4], which contains a

red wine: 12;  
glass of wine: 5; 
grape wine: 3; 
image of wine: 4; 
red wine bottle 9; 
Wine bottle: 21;
bottle of red wine: 3

birds: 44; 
birds blue jays: 2; 
blue: 14; 
blue bird: 8;
blue jay: 41; 
blue jay bird: 36;
deciduous forest animals: 33

beds for small spaces: 1; 
boy bedroom small spaces: 6; 
kids beds: 1; 
small space: 1; 
storage solutions for small 
spaces: 3; 
utilize small space: 1

Figure 2: Examples in Clickture dataset (upper row:

clicked images; lower row: search query with click times

on the upper image).

training and a development (Dev) sets. It was collected from
one year click-through data of one commercial image search
engine. There are more than 11.7 millions distinct queries
and 1.0 million unique images of the training set. Figure 2
shows a few exemplary images with their clicked queries and
click counts in the Clickture. For example, users clicked the
first image 12 times in the search results when submitting
query “red wine” in total. Note that there is no surrounding
text or description of images provided in the dataset.

In the Dev set, there are 79,926 ⟨query, image⟩ pairs gen-
erated from 1,000 queries, where each image to the corre-
sponding query was manually annotated on a three point
ordinal scale: Excellent, Good, and Bad. In the experi-
ments, the training set is used for learning the latent sub-
space, while the Dev set is used for performance evaluation.
In addition, there is an official test set for the final evalua-
tion.

3.1 Experimental Settings
Textual and Visual Features. We take the word in

queries as “word features.” Words are stemmed and stop
words are removed. With word features, each query is rep-
resented by a tf vector in the query space. In our exper-
iments, we use the top 50,000 most frequent words as the
word vocabulary. Visual feature derived from Convolutional
Neural Networks (CNN) by using DeCAF [1] is extracted as
image representation.

Compared Approaches. We compare the following ap-
proaches for performance evaluation:

∙ N-Gram SVM Modeling (NGS). We use all the clicked
images of a given query as positive samples and ran-
domly select negative samples from the rest of the
training dataset to build a support vector machine
(SVM) model for each query, and then use this model
to predict the relevance of the query to a new image.
When a query is not in the training set, but its n-grams
appear in some queries of the training set, we generate
the model by linearly fusing the SVM models of these
queries. We name this run as NGS.

∙ Graph-based Label Propagation (GLP) [7]. GLP em-
ploys neighborhood graph search to find the nearest
neighbors on an image similarity graph built up with
visual representations and further aggregates their clicked
queries/click counts to get the labels of the new image.
This run is named as GLP.

∙ Click-through-based Subspace Learning. We design
five runs for CSL approaches: CCA, CCL, PSI, PA,
and their linear fusion FUS.



Table 2: The DCG@25 (%) of our three submitted runs

on test dataset.
Run FUS FUG FUA

47.225 46.404 47.441

Table 3: Run time (ms) of six different approaches. The

experiments are conducted on a regular PC (Intel dual-

core 2.0GHz CPU and 100 GB RAM).
Appr. NGS GLP CCA CCL PSI PA

7500 14.8 4.5 1.0 1.0 1.5

Evaluation Metrics. Following the challenge’s measure-
ment, for each query, we use Discounted Cumulated Gain
(DCG) to evaluate the performance of top 25 images.

3.2 Performance Comparison
Table 1 shows the DCG performance of seven runs aver-

aged over 1,000 queries in Dev dataset. Overall, all the CSL
approaches consistently lead to a performance boost against
NGS. Particularly, the DCG@25 performance of CCL can
achieve 0.5059, which improves NGS by 3.5%. As a re-
sult of linear fusion, FUS improves the performance up to
0.5112. Furthermore, CCA, CCL and FUS all exhibit bet-
ter performance than GLP, while the performance of PA is
slightly less than GLP. More importantly, by learning a low-
dimensional latent subspace, the dimension of the mappings
of textual query and visual image is reduced by several or-
ders of magnitude. In our experiments, the dimensionality
of latent subspace is empirically set to 50 for CCA, CCL, and
PSI. Figure 3 shows the top ten images for query “college
station texas” by using five CSL approaches, respectively.
Table 2 details the performances of our three submitted

runs on test dataset. In addition to FUS, FUG is late fusion
by performing GLP on several visual features including color
moments, wavelet texture, histograms of oriented gradients,
and CNN feature. FUA is average fusion of FUS and FUG.
As indicated by our results, FUS significantly outperforms
FUG and FUA achieves the best performance.

3.3 Run Time
Table 3 lists the detailed run time for each compared

methods. The CSL approaches are extremely efficient, com-
pleting relevance prediction of each image-query pair within
five milliseconds on average. They are much faster than
NGS which needs beyond five seconds and GLP which re-
quires about 15 milliseconds, respectively.

4. CONCLUSION
In this paper, we tackled two major limitations of existing

image search rankers - highly depends on surrounding texts
and learning from training data with label noise. We have
investigated the issues of directly learning the cross-view dis-
tance between a textual query and an image by leveraging
both click data and subspace learning techniques. The click
data represent the click relations between queries and im-
ages, while the subspace learning aims to learn a latent com-
mon subspace between multiple views. The extensive exper-
iments evaluated on 1,000 queries show that CSL approaches
gave better results than SVM-based and graph-based meth-
ods. Moreover, CSL approaches have good properties on

3: Excellent

CCA PAPSI FUSCCL

2:Good 0:Bad

Figure 3: The exemplary list of top ten images for query

“college station texas” ranked by CSL approaches.

both feature dimension reduction and speed, making them
good candidates for online image search applications.
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